Usage examples¶
Most use cases are covered by the seqgra CLI commands seqgra
, seqgras
,
seqgrae
, and seqgraa
.
seqgra
command - core functionality:covers the core functionality of simulating data, creating models, training models, saving and loading models, evaluating models using conventional test set metrics and feature attribution methods
seqgras
command - seqgra summary:gathers metrics across grammars, models, evaluators
seqgrae
command - seqgra ensemble:tests model architecture on grammar across various data set sizes, simulation and model seeds
seqgraa
command - seqgra attribution:used to obtain feature attribution/evidence for selected examples across multiple grammars, models, evaluators
The following schematic shows various seqgra analyses with inputs, outputs, and corresponding commands:
For a detailed description of the four seqgra commands and all arguments, see Command line utilities.
Commonly used suite of seqgra commands¶
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR \
-e metrics roc pr predict \
--eval-sets training validation test
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR \
-e sis \
--eval-n-per-label 20
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR \
-e gradient saliency gradient-x-input integrated-gradients \
--eval-n-per-label 50
seqgra
call: generate synthetic data as defined inDATA_DEFINITION_FILE
and create model as defined inMODEL_DEFINITION_FILE
and train it on synthetic dataseqgra
call: load previously trained model, call conventional evaluators (metrics, roc, pr, and predict) on all examples of training, validation, and test setseqgra
call: load previously trained model, call SIS evaluator on 20 test set examples per label (SIS is the most computationally expensive evaluator)seqgra
call: load previously trained model, call gradient-based evaluators (gradient, saliency, gradient-x-input, and integrated-gradients) on 50 test set examples per label
seqgra use cases¶
Input placeholders:
DATA_DEFINITION_FILE
: path to data definition XML file (see Data definition for a detailed description of the data definition language and dd-folder for examples of data definitions.MODEL_DEFINITION_FILE
: path to model definition XML file (see Model definition for a detailed description of the model definition language and md-folder for examples of model definitions.OUTPUT
: output folder name
For a detailed description of the arguments, see Command line utilities.
Note
Not all data definition / model definition pairs are valid (i.e.,
not all architectures can be trained on all data sets): The sequence
window (x
) and the labels/classes (y
) of the data
definition have to be compatible with the model definition. E.g.,
data definitions of task multi-class classification can only be paired
with model definitions of the same task. Likewise, the number of
labels/classes and the sequence window width must match between data
definition and model definition.
Generate synthetic data only¶
Command:
seqgra -d DATA_DEFINITION_FILE \
-o OUTPUT_DIR
Generated folders and files:
{OUTPUT_DIR}
+-- input
+-- {GRAMMAR ID}
|-- motif-ess-matrix.pdf
|-- motif-ess-matrix.txt
|-- motif-ess-se1-violin.pdf
|-- motif-ess-se2-violin.pdf
|-- motif-ess-statistics.txt
|-- motif-info.txt
|-- motif-kld-matrix.pdf
|-- motif-kld-matrix.txt
|-- motif-kld-se1-violin.pdf
|-- motif-kld-se2-violin.pdf
|-- motif-kld-statistics.txt
|-- session-info.txt
|-- test.txt
|-- test-annotation.txt
|-- test-grammar-heatmap.txt
|-- test-grammar-heatmap.pdf
|-- training.txt
|-- training-annotation.txt
|-- training-grammar-heatmap.txt
|-- training-grammar-heatmap.pdf
|-- validation.txt
|-- validation-annotation.txt
|-- validation-grammar-heatmap.txt
+-- validation-grammar-heatmap.pdf
Pre-existing folders and files:
DATA_DEFINITION_FILE
Generate synthetic data and train model on it¶
Command:
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR
Generated folders and files:
{OUTPUT_DIR}
|-- input
| +-- {GRAMMAR ID}
| |-- motif-ess-matrix.pdf
| |-- motif-ess-matrix.txt
| |-- motif-ess-se1-violin.pdf
| |-- motif-ess-se2-violin.pdf
| |-- motif-ess-statistics.txt
| |-- motif-info.txt
| |-- motif-kld-matrix.pdf
| |-- motif-kld-matrix.txt
| |-- motif-kld-se1-violin.pdf
| |-- motif-kld-se2-violin.pdf
| |-- motif-kld-statistics.txt
| |-- session-info.txt
| |-- test.txt
| |-- test-annotation.txt
| |-- test-grammar-heatmap.txt
| |-- test-grammar-heatmap.pdf
| |-- training.txt
| |-- training-annotation.txt
| |-- training-grammar-heatmap.txt
| |-- training-grammar-heatmap.pdf
| |-- validation.txt
| |-- validation-annotation.txt
| |-- validation-grammar-heatmap.txt
| +-- validation-grammar-heatmap.pdf
+-- models
+-- {GRAMMAR ID}
+-- {MODEL ID}
|-- last-epoch-completed.txt
|-- num-model-parameters.txt
|-- saved_model†
+-- session-info.txt
Pre-existing folders and files:
DATA_DEFINITION_FILE
MODEL_DEFINITION_FILE
Train model on previously synthesized data¶
Command:
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR
Generated folders and files:
{OUTPUT_DIR}
+-- models
+-- {GRAMMAR ID}
+-- {MODEL ID}
|-- last-epoch-completed.txt
|-- num-model-parameters.txt
|-- saved_model†
+-- session-info.txt
Pre-existing folders and files:
DATA_DEFINITION_FILE
MODEL_DEFINITION_FILE
{OUTPUT_DIR}/input/{GRAMMAR ID}/*
Train model on experimental or externally synthesized data¶
Command:
seqgra -f DATA_FOLDER \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR
where experimental or externally synthesized data is in the
{OUTPUT_DIR}/input/{DATA_FOLDER}
folder. For a description of the data
format, see Format of input data.
Generated folders and files:
{OUTPUT_DIR}
+-- models
+-- {DATA_FOLDER}
+-- {MODEL ID}
|-- last-epoch-completed.txt
|-- num-model-parameters.txt
|-- saved_model†
+-- session-info.txt
Pre-existing folders and files:
MODEL_DEFINITION_FILE
{OUTPUT_DIR}/input/{DATA_FOLDER}/test.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/test-annotation.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/training.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/training-annotation.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/validation.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/validation-annotation.txt
Run metrics
, predict
, roc
, and pr
evaluators on model that was previously trained on synthesized data¶
Command:
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-e metrics predict roc pr \
-o OUTPUT_DIR
Note
the
-e
argument is used to specify a list of evaluators by their IDs (see Simulators, Learners, Evaluators, Comparators for a table of all evaluator IDs)
Generated folders and files:
{OUTPUT_DIR}
+-- evaluation
+-- {GRAMMAR ID}
+-- {MODEL ID}
|-- metrics
| +-- test-metrics.txt
|-- pr
| +-- test-pr-curve.pdf
|-- predict
| +-- test-y-hat.txt
+-- roc
+-- test-roc-curve.pdf
Pre-existing folders and files:
DATA_DEFINITION_FILE
MODEL_DEFINITION_FILE
{OUTPUT_DIR}/input/{GRAMMAR ID}/*
{OUTPUT_DIR}/models/{GRAMMAR ID}/{MODEL ID}/*
Run SIS evaluator on model that was previously trained on experimental data¶
Command:
seqgra -f DATA_FOLDER \
-m MODEL_DEFINITION_FILE \
-e sis \
-o OUTPUT_DIR \
--eval-n-per-label 30
Note
the
-e
argument is used to specify a list of evaluators by their IDs (see Simulators, Learners, Evaluators, Comparators for a table of all evaluator IDs)--eval-n-per-label 30
restricts the number of examples that are evaluated with SIS to 30 per label. Otherwise sufficient input subsets will be identified for all examples in the test set, which might take a long time.
Generated folders and files:
{OUTPUT_DIR}
+-- evaluation
+-- {DATA_FOLDER}
+-- {MODEL ID}
+-- sis
|-- test-df.txt
|-- test-grammar-agreement-thresholded.pdf
|-- test-grammar-agreement-thresholded-df.txt
+-- test-statistics-thresholded.txt
Pre-existing folders and files:
MODEL_DEFINITION_FILE
{OUTPUT_DIR}/input/{DATA_FOLDER}/test.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/test-annotation.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/training.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/training-annotation.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/validation.txt
{OUTPUT_DIR}/input/{DATA_FOLDER}/validation-annotation.txt
{OUTPUT_DIR}/models/{DATA_FOLDER}/{MODEL ID}/*
Generate synthetic data, train model on it, and evaluate model using various gradient-based feature importance evaluators¶
Command:
seqgra -d DATA_DEFINITION_FILE \
-m MODEL_DEFINITION_FILE \
-e gradient gradient-x-input integrated-gradients saliency \
-o OUTPUT_DIR \
--eval-sets validation test \
--eval-n-per-label 500
Note
the
-e
argument is used to specify a list of evaluators by their IDs (see Simulators, Learners, Evaluators, Comparators for a table of all evaluator IDs)--eval-sets
selects training, validation or test set for evaluation. Here we run evaluators on both validation and test set examples, default value is test set only.--eval-n-per-label
restricts the number of examples that the evaluators see. Here we evaluate 500 randomly select examples per label.
Generated folders and files:
{OUTPUT_DIR}
|-- input
| +-- {GRAMMAR ID}
| |-- motif-ess-matrix.pdf
| |-- motif-ess-matrix.txt
| |-- motif-ess-se1-violin.pdf
| |-- motif-ess-se2-violin.pdf
| |-- motif-ess-statistics.txt
| |-- motif-info.txt
| |-- motif-kld-matrix.pdf
| |-- motif-kld-matrix.txt
| |-- motif-kld-se1-violin.pdf
| |-- motif-kld-se2-violin.pdf
| |-- motif-kld-statistics.txt
| |-- session-info.txt
| |-- test.txt
| |-- test-annotation.txt
| |-- test-grammar-heatmap.txt
| |-- test-grammar-heatmap.pdf
| |-- training.txt
| |-- training-annotation.txt
| |-- training-grammar-heatmap.txt
| |-- training-grammar-heatmap.pdf
| |-- validation.txt
| |-- validation-annotation.txt
| |-- validation-grammar-heatmap.txt
| +-- validation-grammar-heatmap.pdf
|-- models
| +-- {GRAMMAR ID}
| +-- {MODEL ID}
| |-- last-epoch-completed.txt
| |-- num-model-parameters.txt
| |-- saved_model†
| +-- session-info.txt
+-- evaluation
+-- {GRAMMAR ID}
+-- {MODEL ID}
|-- gradient
| |-- test-df.txt
| |-- test-feature-importance-matrix.npy
| |-- test-grammar-agreement.pdf
| |-- test-grammar-agreement-df.txt
| |-- test-grammar-agreement-thresholded.pdf
| |-- test-grammar-agreement-thresholded-df.txt
| |-- test-statistics.txt
| |-- test-statistics-thresholded.txt
| |-- validation-df.txt
| |-- validation-feature-importance-matrix.npy
| |-- validation-grammar-agreement.pdf
| |-- validation-grammar-agreement-df.txt
| |-- validation-grammar-agreement-thresholded.pdf
| |-- validation-grammar-agreement-thresholded-df.txt
| |-- validation-statistics.txt
| +-- validation-statistics-thresholded.txt
|-- gradient-x-input
| |-- test-df.txt
| |-- test-feature-importance-matrix.npy
| |-- test-grammar-agreement.pdf
| |-- test-grammar-agreement-df.txt
| |-- test-grammar-agreement-thresholded.pdf
| |-- test-grammar-agreement-thresholded-df.txt
| |-- test-statistics.txt
| |-- test-statistics-thresholded.txt
| |-- validation-df.txt
| |-- validation-feature-importance-matrix.npy
| |-- validation-grammar-agreement.pdf
| |-- validation-grammar-agreement-df.txt
| |-- validation-grammar-agreement-thresholded.pdf
| |-- validation-grammar-agreement-thresholded-df.txt
| |-- validation-statistics.txt
| +-- validation-statistics-thresholded.txt
|-- integrated-gradients
| |-- test-df.txt
| |-- test-feature-importance-matrix.npy
| |-- test-grammar-agreement.pdf
| |-- test-grammar-agreement-df.txt
| |-- test-grammar-agreement-thresholded.pdf
| |-- test-grammar-agreement-thresholded-df.txt
| |-- test-statistics.txt
| |-- test-statistics-thresholded.txt
| |-- validation-df.txt
| |-- validation-feature-importance-matrix.npy
| |-- validation-grammar-agreement.pdf
| |-- validation-grammar-agreement-df.txt
| |-- validation-grammar-agreement-thresholded.pdf
| |-- validation-grammar-agreement-thresholded-df.txt
| |-- validation-statistics.txt
| +-- validation-statistics-thresholded.txt
+-- saliency
|-- test-df.txt
|-- test-feature-importance-matrix.npy
|-- test-grammar-agreement.pdf
|-- test-grammar-agreement-df.txt
|-- test-grammar-agreement-thresholded.pdf
|-- test-grammar-agreement-thresholded-df.txt
|-- test-statistics.txt
|-- test-statistics-thresholded.txt
|-- validation-df.txt
|-- validation-feature-importance-matrix.npy
|-- validation-grammar-agreement.pdf
|-- validation-grammar-agreement-df.txt
|-- validation-grammar-agreement-thresholded.pdf
|-- validation-grammar-agreement-thresholded-df.txt
|-- validation-statistics.txt
+-- validation-statistics-thresholded.txt
Pre-existing folders and files:
DATA_DEFINITION_FILE
MODEL_DEFINITION_FILE
Generate collection of data definitions and model definitions derived from root definitions¶
This command is used to generate data definitions with various simulation seeds and data set sizes and model definition with various model seeds.
Command:
seqgrae -a ANALYSIS_ID \
-d DATA_DEFINITION_FILE
-m MODEL_DEFINITION_FILE_1 MODEL_DEFINITION_FILE_2
-o OUTPUT_DIR
Generated folders and files:
{OUTPUT_DIR}
|-- defs
| |-- data
| | |-- DATA_DEFINITION_FILE-10k-s1.xml
| | |-- DATA_DEFINITION_FILE-10k-s2.xml
| | |-- DATA_DEFINITION_FILE-10k-s3.xml
| | |-- DATA_DEFINITION_FILE-20k-s1.xml
| | |-- DATA_DEFINITION_FILE-20k-s2.xml
| | |-- DATA_DEFINITION_FILE-20k-s3.xml
| | |-- DATA_DEFINITION_FILE-40k-s1.xml
| | |-- DATA_DEFINITION_FILE-40k-s2.xml
| | |-- DATA_DEFINITION_FILE-40k-s3.xml
| | |-- DATA_DEFINITION_FILE-80k-s1.xml
| | |-- DATA_DEFINITION_FILE-80k-s2.xml
| | |-- DATA_DEFINITION_FILE-80k-s3.xml
| | |-- DATA_DEFINITION_FILE-160k-s1.xml
| | |-- DATA_DEFINITION_FILE-160k-s2.xml
| | |-- DATA_DEFINITION_FILE-160k-s3.xml
| | |-- DATA_DEFINITION_FILE-320k-s1.xml
| | |-- DATA_DEFINITION_FILE-320k-s2.xml
| | |-- DATA_DEFINITION_FILE-320k-s3.xml
| | |-- DATA_DEFINITION_FILE-640k-s1.xml
| | |-- DATA_DEFINITION_FILE-640k-s2.xml
| | |-- DATA_DEFINITION_FILE-640k-s3.xml
| | |-- DATA_DEFINITION_FILE-1280k-s1.xml
| | |-- DATA_DEFINITION_FILE-1280k-s2.xml
| | |-- DATA_DEFINITION_FILE-1280k-s3.xml
| +-- model
| |-- MODEL_DEFINITION_FILE_1-s1.xml
| |-- MODEL_DEFINITION_FILE_1-s2.xml
| |-- MODEL_DEFINITION_FILE_1-s3.xml
| |-- MODEL_DEFINITION_FILE_2-s1.xml
| |-- MODEL_DEFINITION_FILE_2-s2.xml
| +-- MODEL_DEFINITION_FILE_2-s3.xml
+-- analyses
+-- {ANALYSIS ID}.sh
Pre-existing folders and files:
DATA_DEFINITION_FILE
MODEL_DEFINITION_FILE_1
MODEL_DEFINITION_FILE_2
Subsample experimental data and generate collection of model definitions derived from root definition¶
This command is used to subsample experimental data and generate model definition with various model seeds.
Command:
seqgrae -a ANALYSIS_ID \
-f DATA_FOLDER \
-m MODEL_DEFINITION_FILE \
-o OUTPUT_DIR
Generated folders and files:
{OUTPUT_DIR}
|-- defs
| +-- model
| |-- MODEL_DEFINITION_FILE-s1.xml
| |-- MODEL_DEFINITION_FILE-s2.xml
| |-- MODEL_DEFINITION_FILE-s3.xml
|-- inputs
| |-- DATA_FOLDER-0.05-s1.xml
| |-- DATA_FOLDER-0.05-s2.xml
| |-- DATA_FOLDER-0.05-s3.xml
| |-- DATA_FOLDER-0.1-s1.xml
| |-- DATA_FOLDER-0.1-s2.xml
| |-- DATA_FOLDER-0.1-s3.xml
| |-- DATA_FOLDER-0.2-s1.xml
| |-- DATA_FOLDER-0.2-s2.xml
| |-- DATA_FOLDER-0.2-s3.xml
| |-- DATA_FOLDER-0.4-s1.xml
| |-- DATA_FOLDER-0.4-s2.xml
| |-- DATA_FOLDER-0.4-s3.xml
| |-- DATA_FOLDER-0.8-s1.xml
| |-- DATA_FOLDER-0.8-s2.xml
| |-- DATA_FOLDER-0.8-s3.xml
| |-- DATA_FOLDER-1.0-s1.xml
| |-- DATA_FOLDER-1.0-s2.xml
| |-- DATA_FOLDER-1.0-s3.xml
+-- analyses
+-- {ANALYSIS ID}.sh
Pre-existing folders and files:
DATA_FOLDER
MODEL_DEFINITION_FILE
Summarize results across multiple grammars using comparators roc
and pr
¶
Command:
seqgras -a sim-basic-mc2-tf-mc2-dna1000-conv10-fc5 \
-c roc pr \
-o data \
-g mc2-dna1000-homer-10k-s1 mc2-dna1000-homer-20k-s1 mc2-dna1000-homer-30k-s1 \
mc2-dna1000-homer-40k-s1 mc2-dna1000-homer-50k-s1 mc2-dna1000-homer-60k-s1 \
mc2-dna1000-homer-70k-s1 mc2-dna1000-homer-80k-s1 mc2-dna1000-homer-90k-s1 \
mc2-dna1000-homer-100k-s1 mc2-dna1000-homer-110k-s1 mc2-dna1000-homer-120k-s1 \
mc2-dna1000-homer-130k-s1 mc2-dna1000-homer-140k-s1 mc2-dna1000-homer-150k-s1 \
mc2-dna1000-homer-200k-s1 mc2-dna1000-homer-500k-s1 mc2-dna1000-homer-1000k-s1 \
mc2-dna1000-homer-2000k-s1 \
-m tf-mc2-dna1000-conv10-fc5 \
-l '10,000 examples' '20,000 examples' '30,000 examples' '40,000 examples' \
'50,000 examples' '60,000 examples' '70,000 examples' '80,000 examples' \
'90,000 examples' '100,000 examples' '110,000 examples' '120,000 examples' \
'130,000 examples' '140,000 examples' '150,000 examples' '200,000 examples' \
'500,000 examples' '1,000,000 examples' '2,000,000 examples'
Note
the
-c
argument is used to specify a list of comparators by their IDs (see Simulators, Learners, Evaluators, Comparators for a table of all comparator IDs)the
-g
argument is used to specify all grammar IDs / data foldersthe
-m
argument is used to specify all model IDsthe
-l
argument is used to label the curves for ROC/PR comparators
Generated folders and files:
{OUTPUT_DIR}
+-- model-comparisons
+-- sim-basic-mc2-tf-mc2-dna1000-conv10-fc5
|-- test-pr-curve.pdf
+-- test-roc-curve.pdf
Pre-existing folders and files:
{OUTPUT_DIR}/input/{mc2-dna1000-homer-10k}/*
{OUTPUT_DIR}/models/{mc2-dna1000-homer-10k}/{tf-mc2-dna1000-conv10-fc5}/*
{OUTPUT_DIR}/evaluation/{mc2-dna1000-homer-10k}/{tf-mc2-dna1000-conv10-fc5}/*
{OUTPUT_DIR}/input/{mc2-dna1000-homer-20k}/*
{OUTPUT_DIR}/models/{mc2-dna1000-homer-20k}/{tf-mc2-dna1000-conv10-fc5}/*
{OUTPUT_DIR}/evaluation/{mc2-dna1000-homer-20k}/{tf-mc2-dna1000-conv10-fc5}/*
…
Summarize results across multiple grammars using comparators table
, curve-table
, and fi-eval-table
¶
Command:
seqgras -a sim-basic-mc10-interaction-spacing-torch-mc10-dna1000-conv10w-gmp-fc10
-c table curve-table fi-eval-table
-o data
-g mc10-dna1000-homer-interaction-spacing-10k \
mc10-dna1000-homer-interaction-spacing-10k-1 \
mc10-dna1000-homer-interaction-spacing-10k-2 \
mc10-dna1000-homer-interaction-spacing-10k-3 \
mc10-dna1000-homer-interaction-spacing-10k-4 \
mc10-dna1000-homer-interaction-spacing-20k \
mc10-dna1000-homer-interaction-spacing-20k-1 \
mc10-dna1000-homer-interaction-spacing-20k-2 \
mc10-dna1000-homer-interaction-spacing-20k-3 \
mc10-dna1000-homer-interaction-spacing-20k-4 \
mc10-dna1000-homer-interaction-spacing-30k \
mc10-dna1000-homer-interaction-spacing-30k-1 \
mc10-dna1000-homer-interaction-spacing-30k-2 \
mc10-dna1000-homer-interaction-spacing-30k-3 \
mc10-dna1000-homer-interaction-spacing-30k-4 \
mc10-dna1000-homer-interaction-spacing-40k \
mc10-dna1000-homer-interaction-spacing-40k-1 \
mc10-dna1000-homer-interaction-spacing-40k-2 \
mc10-dna1000-homer-interaction-spacing-40k-3 \
mc10-dna1000-homer-interaction-spacing-40k-4 \
mc10-dna1000-homer-interaction-spacing-50k \
mc10-dna1000-homer-interaction-spacing-50k-1 \
mc10-dna1000-homer-interaction-spacing-50k-2 \
mc10-dna1000-homer-interaction-spacing-50k-3 \
mc10-dna1000-homer-interaction-spacing-50k-4 \
mc10-dna1000-homer-interaction-spacing-60k \
mc10-dna1000-homer-interaction-spacing-60k-1 \
mc10-dna1000-homer-interaction-spacing-60k-2 \
mc10-dna1000-homer-interaction-spacing-60k-3 \
mc10-dna1000-homer-interaction-spacing-60k-4 \
mc10-dna1000-homer-interaction-spacing-70k \
mc10-dna1000-homer-interaction-spacing-70k-1 \
mc10-dna1000-homer-interaction-spacing-70k-2 \
mc10-dna1000-homer-interaction-spacing-70k-3 \
mc10-dna1000-homer-interaction-spacing-70k-4 \
mc10-dna1000-homer-interaction-spacing-80k \
mc10-dna1000-homer-interaction-spacing-80k-1 \
mc10-dna1000-homer-interaction-spacing-80k-2 \
mc10-dna1000-homer-interaction-spacing-80k-3 \
mc10-dna1000-homer-interaction-spacing-80k-4 \
mc10-dna1000-homer-interaction-spacing-90k \
mc10-dna1000-homer-interaction-spacing-90k-1 \
mc10-dna1000-homer-interaction-spacing-90k-2 \
mc10-dna1000-homer-interaction-spacing-90k-3 \
mc10-dna1000-homer-interaction-spacing-90k-4 \
mc10-dna1000-homer-interaction-spacing-100k \
mc10-dna1000-homer-interaction-spacing-100k-1 \
mc10-dna1000-homer-interaction-spacing-100k-2 \
mc10-dna1000-homer-interaction-spacing-100k-3 \
mc10-dna1000-homer-interaction-spacing-100k-4 \
-m torch-mc10-dna1000-conv10w-gmp-fc10
Note
the
-c
argument is used to specify a list of comparators by their IDs (see Simulators, Learners, Evaluators, Comparators for a table of all comparator IDs)the
-g
argument is used to specify all grammar IDs / data foldersthe
-m
argument is used to specify all model IDs
Generated folders and files:
{OUTPUT_DIR}
+-- model-comparisons
+-- sim-basic-mc10-interaction-spacing-torch-mc10-dna1000-conv10w-gmp-fc10
|-- curve-table.txt
|-- fie-table.txt
+-- table.txt
Pre-existing folders and files:
{OUTPUT_DIR}/input/{mc10-dna1000-homer-interaction-spacing-10k}/*
{OUTPUT_DIR}/models/{mc10-dna1000-homer-interaction-spacing-10k}/{torch-mc10-dna1000-conv10w-gmp-fc10}/*
{OUTPUT_DIR}/evaluation/{mc10-dna1000-homer-interaction-spacing-10k}/{torch-mc10-dna1000-conv10w-gmp-fc10}/*
{OUTPUT_DIR}/input/{mc10-dna1000-homer-interaction-spacing-10k-1}/*
{OUTPUT_DIR}/models/{mc10-dna1000-homer-interaction-spacing-10k-1}/{torch-mc10-dna1000-conv10w-gmp-fc10}/*
{OUTPUT_DIR}/evaluation/{mc10-dna1000-homer-interaction-spacing-10k-1}/{torch-mc10-dna1000-conv10w-gmp-fc10}/*
…
† model files are library-dependent