seqgra.constants module

class ComparatorID[source]

Bases: object

ALL_COMPARATOR_IDS: FrozenSet[str] = frozenset({'curve-table', 'fi-eval-table', 'pr', 'roc', 'table'})
CURVE_TABLE: str = 'curve-table'
FEATURE_IMPORTANCE_EVALUATOR_TABLE: str = 'fi-eval-table'
PR: str = 'pr'
ROC: str = 'roc'
TABLE: str = 'table'
class DataSet[source]

Bases: object

ALL_SETS: List[str] = ['training', 'validation', 'test']
TEST: str = 'test'
TRAINING: str = 'training'
VALIDATION: str = 'validation'
class EvaluatorID[source]

Bases: object

ALL_EVALUATOR_IDS: FrozenSet[str] = frozenset({'contrastive-excitation-backprop', 'deconv', 'deep-lift', 'excitation-backprop', 'feedback', 'grad-cam', 'gradient', 'gradient-x-input', 'guided-backprop', 'integrated-gradients', 'metrics', 'nonlinear-integrated-gradients', 'pr', 'predict', 'roc', 'saliency', 'sis', 'smooth-grad'})
CONTRASTIVE_EXCITATION_BACKPROP: str = 'contrastive-excitation-backprop'
CONVENTIONAL_EVALUATORS: FrozenSet[str] = frozenset({'metrics', 'pr', 'predict', 'roc'})
CORE_FEATURE_IMPORTANCE_EVALUATORS: FrozenSet[str] = frozenset({'deconv', 'deep-lift', 'gradient', 'gradient-x-input', 'guided-backprop', 'integrated-gradients', 'saliency'})
DECONV: str = 'deconv'
DEEP_LIFT: str = 'deep-lift'
EXCITATION_BACKPROP: str = 'excitation-backprop'
FEATURE_IMPORTANCE_EVALUATORS: FrozenSet[str] = frozenset({'contrastive-excitation-backprop', 'deconv', 'deep-lift', 'excitation-backprop', 'feedback', 'grad-cam', 'gradient', 'gradient-x-input', 'guided-backprop', 'integrated-gradients', 'nonlinear-integrated-gradients', 'saliency', 'sis', 'smooth-grad'})
FEEDBACK: str = 'feedback'
GRADIENT: str = 'gradient'
GRADIENT_X_INPUT: str = 'gradient-x-input'
GRAD_CAM: str = 'grad-cam'
GUIDED_BACKPROP: str = 'guided-backprop'
INTEGRATED_GRADIENTS: str = 'integrated-gradients'
METRICS: str = 'metrics'
MODEL_AGNOSTIC_EVALUATORS: FrozenSet[str] = frozenset({'metrics', 'pr', 'predict', 'roc', 'sis'})
NONLINEAR_INTEGRATED_GRADIENTS: str = 'nonlinear-integrated-gradients'
PR: str = 'pr'
PREDICT: str = 'predict'
ROC: str = 'roc'
SALIENCY: str = 'saliency'
SIS: str = 'sis'
SMOOTH_GRAD: str = 'smooth-grad'
class LibraryType[source]

Bases: object

ALL_LIBRARIES: FrozenSet[str] = frozenset({'BayesOptimalClassifier', 'PyTorch', 'TensorFlow'})
BAYES_OPTIMAL_CLASSIFIER: str = 'BayesOptimalClassifier'
TENSORFLOW: str = 'TensorFlow'
TORCH: str = 'PyTorch'
class PositionType[source]

Bases: object

AA_MASKED: str = 'X'
BACKGROUND: str = '_'
CONFOUNDER: str = 'C'
DNA_MASKED: str = 'N'
GRAMMAR: str = 'G'
class SequenceSpaceType[source]

Bases: object

ALL_SEQUENCE_SPACES: FrozenSet[str] = frozenset({'DNA', 'protein'})
DNA: str = 'DNA'
PROTEIN: str = 'protein'
class TaskType[source]

Bases: object

ALL_TASKS: FrozenSet[str] = frozenset({'multi-class classification', 'multi-label classification', 'multiple regression', 'multivariate regression'})
MULTIPLE_REGRESSION: str = 'multiple regression'
MULTIVARIATE_REGRESSION: str = 'multivariate regression'
MULTI_CLASS_CLASSIFICATION: str = 'multi-class classification'
MULTI_LABEL_CLASSIFICATION: str = 'multi-label classification'