seqgra.constants module¶
- class ComparatorID[source]¶
Bases:
object
- ALL_COMPARATOR_IDS: FrozenSet[str] = frozenset({'curve-table', 'fi-eval-table', 'pr', 'roc', 'table'})¶
- CURVE_TABLE: str = 'curve-table'¶
- FEATURE_IMPORTANCE_EVALUATOR_TABLE: str = 'fi-eval-table'¶
- PR: str = 'pr'¶
- ROC: str = 'roc'¶
- TABLE: str = 'table'¶
- class DataSet[source]¶
Bases:
object
- ALL_SETS: List[str] = ['training', 'validation', 'test']¶
- TEST: str = 'test'¶
- TRAINING: str = 'training'¶
- VALIDATION: str = 'validation'¶
- class EvaluatorID[source]¶
Bases:
object
- ALL_EVALUATOR_IDS: FrozenSet[str] = frozenset({'contrastive-excitation-backprop', 'deconv', 'deep-lift', 'excitation-backprop', 'feedback', 'grad-cam', 'gradient', 'gradient-x-input', 'guided-backprop', 'integrated-gradients', 'metrics', 'nonlinear-integrated-gradients', 'pr', 'predict', 'roc', 'saliency', 'sis', 'smooth-grad'})¶
- CONTRASTIVE_EXCITATION_BACKPROP: str = 'contrastive-excitation-backprop'¶
- CONVENTIONAL_EVALUATORS: FrozenSet[str] = frozenset({'metrics', 'pr', 'predict', 'roc'})¶
- CORE_FEATURE_IMPORTANCE_EVALUATORS: FrozenSet[str] = frozenset({'deconv', 'deep-lift', 'gradient', 'gradient-x-input', 'guided-backprop', 'integrated-gradients', 'saliency'})¶
- DECONV: str = 'deconv'¶
- DEEP_LIFT: str = 'deep-lift'¶
- EXCITATION_BACKPROP: str = 'excitation-backprop'¶
- FEATURE_IMPORTANCE_EVALUATORS: FrozenSet[str] = frozenset({'contrastive-excitation-backprop', 'deconv', 'deep-lift', 'excitation-backprop', 'feedback', 'grad-cam', 'gradient', 'gradient-x-input', 'guided-backprop', 'integrated-gradients', 'nonlinear-integrated-gradients', 'saliency', 'sis', 'smooth-grad'})¶
- FEEDBACK: str = 'feedback'¶
- GRADIENT: str = 'gradient'¶
- GRADIENT_X_INPUT: str = 'gradient-x-input'¶
- GRAD_CAM: str = 'grad-cam'¶
- GUIDED_BACKPROP: str = 'guided-backprop'¶
- INTEGRATED_GRADIENTS: str = 'integrated-gradients'¶
- METRICS: str = 'metrics'¶
- MODEL_AGNOSTIC_EVALUATORS: FrozenSet[str] = frozenset({'metrics', 'pr', 'predict', 'roc', 'sis'})¶
- NONLINEAR_INTEGRATED_GRADIENTS: str = 'nonlinear-integrated-gradients'¶
- PR: str = 'pr'¶
- PREDICT: str = 'predict'¶
- ROC: str = 'roc'¶
- SALIENCY: str = 'saliency'¶
- SIS: str = 'sis'¶
- SMOOTH_GRAD: str = 'smooth-grad'¶
- class LibraryType[source]¶
Bases:
object
- ALL_LIBRARIES: FrozenSet[str] = frozenset({'BayesOptimalClassifier', 'PyTorch', 'TensorFlow'})¶
- BAYES_OPTIMAL_CLASSIFIER: str = 'BayesOptimalClassifier'¶
- TENSORFLOW: str = 'TensorFlow'¶
- TORCH: str = 'PyTorch'¶
- class PositionType[source]¶
Bases:
object
- AA_MASKED: str = 'X'¶
- BACKGROUND: str = '_'¶
- CONFOUNDER: str = 'C'¶
- DNA_MASKED: str = 'N'¶
- GRAMMAR: str = 'G'¶
- class SequenceSpaceType[source]¶
Bases:
object
- ALL_SEQUENCE_SPACES: FrozenSet[str] = frozenset({'DNA', 'protein'})¶
- DNA: str = 'DNA'¶
- PROTEIN: str = 'protein'¶
- class TaskType[source]¶
Bases:
object
- ALL_TASKS: FrozenSet[str] = frozenset({'multi-class classification', 'multi-label classification', 'multiple regression', 'multivariate regression'})¶
- MULTIPLE_REGRESSION: str = 'multiple regression'¶
- MULTIVARIATE_REGRESSION: str = 'multivariate regression'¶
- MULTI_CLASS_CLASSIFICATION: str = 'multi-class classification'¶
- MULTI_LABEL_CLASSIFICATION: str = 'multi-label classification'¶