seqgra.learner.torch.torchhelper module

MIT - CSAIL - Gifford Lab - seqgra

PyTorch learner helper class

@author: Konstantin Krismer

class TorchHelper[source]

Bases: object

MULTIPLE_REGRESSION_LOSSES: FrozenSet[str] = frozenset({'l1loss', 'mseloss', 'smoothl1loss'})
MULTIVARIATE_REGRESSION_LOSSES: FrozenSet[str] = frozenset({'l1loss', 'mseloss', 'smoothl1loss'})
MULTI_CLASS_CLASSIFICATION_LOSSES: FrozenSet[str] = frozenset({'cosineembeddingloss', 'crossentropyloss', 'hingeembeddingloss', 'kldivloss', 'nllloss'})
MULTI_LABEL_CLASSIFICATION_LOSSES: FrozenSet[str] = frozenset({'bceloss', 'bcewithlogitsloss'})
static create_model(learner: seqgra.learner.learner.Learner)None[source]
static evaluate_model(learner: seqgra.learner.learner.Learner, dataset: torch.utils.data.dataset.Dataset, output_layer_activation_function: Optional[str] = None)[source]
static get_best_model_file_name(best_model_dir: str)str[source]
static get_loss(loss_hyperparameters)[source]
static get_metrics(learner: seqgra.learner.learner.Learner, output_layer_activation_function: Optional[str] = None)[source]
static get_num_params(learner: seqgra.learner.learner.Learner)seqgra.schema.ModelSize[source]
static get_optimizer(optimizer_hyperparameters, model_parameters)[source]
static load_model(learner: seqgra.learner.learner.Learner, file_name: Optional[str] = None)None[source]
static predict(learner: seqgra.learner.learner.Learner, dataset: torch.utils.data.dataset.Dataset, output_layer_activation_function: Optional[str] = None)[source]

This is the forward calculation from x to y :returns: Output tensor with the computed logits. :rtype: softmax_linear

static print_model_summary(learner: seqgra.learner.learner.Learner)[source]
static save_model(learner: seqgra.learner.learner.Learner, file_name: Optional[str] = None)None[source]
static set_seed(learner: seqgra.learner.learner.Learner)None[source]
static train_model(learner: seqgra.learner.learner.Learner, training_dataset: torch.utils.data.dataset.Dataset, validation_dataset: torch.utils.data.dataset.Dataset, output_layer_activation_function: Optional[str] = None, silent: bool = False)None[source]
static train_model_basic(learner: seqgra.learner.learner.Learner, training_dataset: torch.utils.data.dataset.Dataset, validation_dataset: torch.utils.data.dataset.Dataset, output_layer_activation_function: Optional[str] = None, silent: bool = False)None[source]
static write_session_info(learner: seqgra.learner.learner.Learner)None[source]