seqgra.model.model.modeldefinition module¶
- class ModelDefinition(model_id: str = '', name: str = '', description: str = '', task: str = 'multi-class classification', sequence_space: str = 'DNA', library: str = 'PyTorch', implementation: Optional[str] = None, input_encoding: Optional[str] = '1D', labels: Optional[List[str]] = None, seed: int = 0, architecture: Optional[seqgra.model.model.architecture.Architecture] = None, loss_hyperparameters: Optional[Dict[str, str]] = None, optimizer_hyperparameters: Optional[Dict[str, str]] = None, training_process_hyperparameters: Optional[Dict[str, str]] = None)[source]¶
Bases:
object
TODO
- id¶
learner ID, used for output folder name
- Type
str
- name¶
learner name
- Type
str
- description¶
concise description of the model architecture
- Type
str
- task¶
one of the following: multi-class classification, multi-label classification, multiple regression, multivariate regression
- Type
str
- sequence_space¶
one of the following: DNA, protein
- Type
str
- library¶
one of the following: TensorFlow, PyTorch
- Type
str
- implementation¶
class name of the learner implementation, e.g., KerasDNAMultiLabelClassificationLearner
- Type
Optional[str]
- labels¶
class labels expected from output layer
- Type
List[str]
- seed¶
seed for Python, NumPy, and machine learning library
- Type
int
- architecture¶
model architecture
- Type
- loss_hyperparameters¶
hyperparmeters for loss function, e.g., type of loss function
- Type
Dict[str, str]
- optimizer_hyperparameters¶
hyperparmeters for optimizer, e.g., optimizer type
- Type
Dict[str, str]
- training_process_hyperparameters¶
hyperparmeters regarding the training process, e.g., batch size
- Type
Dict[str, str]