seqgra.model.model.modeldefinition module

class ModelDefinition(model_id: str = '', name: str = '', description: str = '', task: str = 'multi-class classification', sequence_space: str = 'DNA', library: str = 'PyTorch', implementation: Optional[str] = None, input_encoding: Optional[str] = '1D', labels: Optional[List[str]] = None, seed: int = 0, architecture: Optional[seqgra.model.model.architecture.Architecture] = None, loss_hyperparameters: Optional[Dict[str, str]] = None, optimizer_hyperparameters: Optional[Dict[str, str]] = None, training_process_hyperparameters: Optional[Dict[str, str]] = None)[source]

Bases: object

TODO

id

learner ID, used for output folder name

Type

str

name

learner name

Type

str

description

concise description of the model architecture

Type

str

task

one of the following: multi-class classification, multi-label classification, multiple regression, multivariate regression

Type

str

sequence_space

one of the following: DNA, protein

Type

str

library

one of the following: TensorFlow, PyTorch

Type

str

implementation

class name of the learner implementation, e.g., KerasDNAMultiLabelClassificationLearner

Type

Optional[str]

labels

class labels expected from output layer

Type

List[str]

seed

seed for Python, NumPy, and machine learning library

Type

int

architecture

model architecture

Type

Architecture

loss_hyperparameters

hyperparmeters for loss function, e.g., type of loss function

Type

Dict[str, str]

optimizer_hyperparameters

hyperparmeters for optimizer, e.g., optimizer type

Type

Dict[str, str]

training_process_hyperparameters

hyperparmeters regarding the training process, e.g., batch size

Type

Dict[str, str]